tint2/src/util/area.c
2017-04-13 14:07:23 +02:00

1137 lines
35 KiB
C

/**************************************************************************
*
* Tint2 : area
*
* Copyright (C) 2008 thierry lorthiois (lorthiois@bbsoft.fr) from Omega distribution
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
**************************************************************************/
#include <assert.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xatom.h>
#include <X11/extensions/Xrender.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pango/pangocairo.h>
#include "area.h"
#include "server.h"
#include "panel.h"
#include "common.h"
Area *mouse_over_area = NULL;
void init_background(Background *bg)
{
memset(bg, 0, sizeof(Background));
bg->border.mask = BORDER_TOP | BORDER_BOTTOM | BORDER_LEFT | BORDER_RIGHT;
}
void initialize_positions(void *obj, int offset)
{
Area *a = (Area *)obj;
for (GList *l = a->children; l; l = l->next) {
Area *child = ((Area *)l->data);
if (panel_horizontal) {
child->posy = offset + top_border_width(a) + a->paddingy;
child->height = a->height - 2 * a->paddingy - top_bottom_border_width(a);
if (child->_on_change_layout)
child->_on_change_layout(child);
initialize_positions(child, child->posy);
} else {
child->posx = offset + left_border_width(a) + a->paddingy;
child->width = a->width - 2 * a->paddingy - left_right_border_width(a);
if (child->_on_change_layout)
child->_on_change_layout(child);
initialize_positions(child, child->posx);
}
}
}
void relayout_fixed(Area *a)
{
if (!a->on_screen)
return;
// Children are resized before the parent
GList *l;
for (l = a->children; l; l = l->next)
relayout_fixed(l->data);
// Recalculate size
a->_changed = FALSE;
if (a->resize_needed && a->size_mode == LAYOUT_FIXED) {
a->resize_needed = FALSE;
if (a->_resize && a->_resize(a)) {
// The size has changed => resize needed for the parent
if (a->parent)
((Area *)a->parent)->resize_needed = TRUE;
a->_changed = TRUE;
}
}
}
void relayout_dynamic(Area *a, int level)
{
if (!a->on_screen)
return;
// Area is resized before its children
if (a->resize_needed && a->size_mode == LAYOUT_DYNAMIC) {
a->resize_needed = FALSE;
if (a->_resize) {
if (a->_resize(a))
a->_changed = TRUE;
// resize children with LAYOUT_DYNAMIC
for (GList *l = a->children; l; l = l->next) {
Area *child = ((Area *)l->data);
if (child->size_mode == LAYOUT_DYNAMIC && child->children)
child->resize_needed = 1;
}
}
}
// Layout children
if (a->children) {
if (a->alignment == ALIGN_LEFT) {
int pos =
(panel_horizontal ? a->posx + left_border_width(a) : a->posy + top_border_width(a)) + a->paddingxlr;
for (GList *l = a->children; l; l = l->next) {
Area *child = ((Area *)l->data);
if (!child->on_screen)
continue;
if (panel_horizontal) {
if (pos != child->posx) {
// pos changed => redraw
child->posx = pos;
child->_changed = TRUE;
}
} else {
if (pos != child->posy) {
// pos changed => redraw
child->posy = pos;
child->_changed = TRUE;
}
}
relayout_dynamic(child, level + 1);
pos += panel_horizontal ? child->width + a->paddingx : child->height + a->paddingx;
}
} else if (a->alignment == ALIGN_RIGHT) {
int pos = (panel_horizontal ? a->posx + a->width - right_border_width(a)
: a->posy + a->height - bottom_border_width(a)) -
a->paddingxlr;
for (GList *l = g_list_last(a->children); l; l = l->prev) {
Area *child = ((Area *)l->data);
if (!child->on_screen)
continue;
pos -= panel_horizontal ? child->width : child->height;
if (panel_horizontal) {
if (pos != child->posx) {
// pos changed => redraw
child->posx = pos;
child->_changed = TRUE;
}
} else {
if (pos != child->posy) {
// pos changed => redraw
child->posy = pos;
child->_changed = TRUE;
}
}
relayout_dynamic(child, level + 1);
pos -= a->paddingx;
}
} else if (a->alignment == ALIGN_CENTER) {
int children_size = 0;
for (GList *l = a->children; l; l = l->next) {
Area *child = ((Area *)l->data);
if (!child->on_screen)
continue;
children_size += panel_horizontal ? child->width : child->height;
children_size += (l == a->children) ? 0 : a->paddingx;
}
int pos =
(panel_horizontal ? a->posx + left_border_width(a) : a->posy + top_border_width(a)) + a->paddingxlr;
pos += ((panel_horizontal ? a->width : a->height) - children_size) / 2;
for (GList *l = a->children; l; l = l->next) {
Area *child = ((Area *)l->data);
if (!child->on_screen)
continue;
if (panel_horizontal) {
if (pos != child->posx) {
// pos changed => redraw
child->posx = pos;
child->_changed = TRUE;
}
} else {
if (pos != child->posy) {
// pos changed => redraw
child->posy = pos;
child->_changed = TRUE;
}
}
relayout_dynamic(child, level + 1);
pos += panel_horizontal ? child->width + a->paddingx : child->height + a->paddingx;
}
}
}
if (a->_changed) {
// pos/size changed
a->_redraw_needed = TRUE;
if (a->_on_change_layout)
a->_on_change_layout(a);
}
}
int compute_desired_size(Area *a)
{
if (!a->on_screen)
return 0;
if (a->_compute_desired_size)
return a->_compute_desired_size(a);
if (a->size_mode == LAYOUT_FIXED)
fprintf(stderr, YELLOW "Area %s does not set desired size!" RESET "\n", a->name);
return container_compute_desired_size(a);
}
int container_compute_desired_size(Area *a)
{
if (!a->on_screen)
return 0;
int result = 2 * a->paddingxlr + (panel_horizontal ? left_right_border_width(a) : top_bottom_border_width(a));
int children_count = 0;
for (GList *l = a->children; l != NULL; l = l->next) {
Area *child = (Area *)l->data;
if (child->on_screen) {
result += compute_desired_size(child);
children_count++;
}
}
if (children_count > 0)
result += (children_count - 1) * a->paddingx;
return result;
}
void relayout(Area *a)
{
relayout_fixed(a);
relayout_dynamic(a, 1);
}
int relayout_with_constraint(Area *a, int maximum_size)
{
int fixed_children_count = 0;
int dynamic_children_count = 0;
if (panel_horizontal) {
// detect free size for LAYOUT_DYNAMIC Areas
int size = a->width - 2 * a->paddingxlr - left_right_border_width(a);
for (GList *l = a->children; l; l = l->next) {
Area *child = (Area *)l->data;
if (child->on_screen && child->size_mode == LAYOUT_FIXED) {
size -= child->width;
fixed_children_count++;
}
if (child->on_screen && child->size_mode == LAYOUT_DYNAMIC)
dynamic_children_count++;
}
if (fixed_children_count + dynamic_children_count > 0)
size -= (fixed_children_count + dynamic_children_count - 1) * a->paddingx;
int width = 0;
int modulo = 0;
if (dynamic_children_count > 0) {
width = size / dynamic_children_count;
modulo = size % dynamic_children_count;
if (width > maximum_size && maximum_size > 0) {
width = maximum_size;
modulo = 0;
}
}
// Resize LAYOUT_DYNAMIC objects
for (GList *l = a->children; l; l = l->next) {
Area *child = (Area *)l->data;
if (child->on_screen && child->size_mode == LAYOUT_DYNAMIC) {
int old_width = child->width;
child->width = width;
if (modulo) {
child->width++;
modulo--;
}
if (child->width != old_width)
child->_changed = TRUE;
}
}
} else {
// detect free size for LAYOUT_DYNAMIC's Area
int size = a->height - 2 * a->paddingxlr - top_bottom_border_width(a);
for (GList *l = a->children; l; l = l->next) {
Area *child = (Area *)l->data;
if (child->on_screen && child->size_mode == LAYOUT_FIXED) {
size -= child->height;
fixed_children_count++;
}
if (child->on_screen && child->size_mode == LAYOUT_DYNAMIC)
dynamic_children_count++;
}
if (fixed_children_count + dynamic_children_count > 0)
size -= (fixed_children_count + dynamic_children_count - 1) * a->paddingx;
int height = 0;
int modulo = 0;
if (dynamic_children_count) {
height = size / dynamic_children_count;
modulo = size % dynamic_children_count;
if (height > maximum_size && maximum_size != 0) {
height = maximum_size;
modulo = 0;
}
}
// Resize LAYOUT_DYNAMIC objects
for (GList *l = a->children; l; l = l->next) {
Area *child = (Area *)l->data;
if (child->on_screen && child->size_mode == LAYOUT_DYNAMIC) {
int old_height = child->height;
child->height = height;
if (modulo) {
child->height++;
modulo--;
}
if (child->height != old_height)
child->_changed = TRUE;
}
}
}
return 0;
}
void schedule_redraw(Area *a)
{
a->_redraw_needed = TRUE;
if (a->has_mouse_over_effect) {
for (int i = 0; i < MOUSE_STATE_COUNT; i++) {
XFreePixmap(server.display, a->pix_by_state[i]);
if (a->pix == a->pix_by_state[i])
a->pix = None;
a->pix_by_state[i] = None;
}
if (a->pix) {
XFreePixmap(server.display, a->pix);
a->pix = None;
}
}
for (GList *l = a->children; l; l = l->next)
schedule_redraw((Area *)l->data);
schedule_panel_redraw();
}
void draw_tree(Area *a)
{
if (!a->on_screen)
return;
if (a->_redraw_needed) {
a->_redraw_needed = FALSE;
draw(a);
}
if (a->pix)
XCopyArea(server.display,
a->pix,
((Panel *)a->panel)->temp_pmap,
server.gc,
0,
0,
a->width,
a->height,
a->posx,
a->posy);
else
fprintf(stderr, RED "%s %d: area %s has no pixmap!!!" RESET "\n", __FILE__, __LINE__, a->name);
for (GList *l = a->children; l; l = l->next)
draw_tree((Area *)l->data);
}
void hide(Area *a)
{
Area *parent = (Area *)a->parent;
if (!a->on_screen)
return;
a->on_screen = FALSE;
if (parent)
parent->resize_needed = TRUE;
if (panel_horizontal)
a->width = 0;
else
a->height = 0;
}
void show(Area *a)
{
Area *parent = (Area *)a->parent;
if (a->on_screen)
return;
a->on_screen = TRUE;
if (parent)
parent->resize_needed = TRUE;
a->resize_needed = TRUE;
schedule_panel_redraw();
}
void update_dependent_gradients(Area *a)
{
if (!a->on_screen)
return;
if (a->_changed) {
for (GList *l = a->dependent_gradients; l; l = l->next) {
GradientInstance *gi = (GradientInstance *)l->data;
update_gradient(gi);
if (gi->area != a)
schedule_redraw(gi->area);
}
}
for (GList *l = a->children; l; l = l->next)
update_dependent_gradients((Area *)l->data);
}
void draw(Area *a)
{
if (a->_changed) {
// On resize/move, invalidate cached pixmaps
for (int i = 0; i < MOUSE_STATE_COUNT; i++) {
XFreePixmap(server.display, a->pix_by_state[i]);
if (a->pix == a->pix_by_state[i]) {
a->pix = None;
}
a->pix_by_state[i] = None;
}
if (a->pix) {
XFreePixmap(server.display, a->pix);
a->pix = None;
}
}
if (a->pix) {
XFreePixmap(server.display, a->pix);
if (a->pix_by_state[a->has_mouse_over_effect ? a->mouse_state : 0] != a->pix)
XFreePixmap(server.display, a->pix_by_state[a->has_mouse_over_effect ? a->mouse_state : 0]);
}
a->pix = XCreatePixmap(server.display, server.root_win, a->width, a->height, server.depth);
a->pix_by_state[a->has_mouse_over_effect ? a->mouse_state : 0] = a->pix;
if (!a->_clear) {
// Add layer of root pixmap (or clear pixmap if real_transparency==true)
if (server.real_transparency)
clear_pixmap(a->pix, 0, 0, a->width, a->height);
XCopyArea(server.display,
((Panel *)a->panel)->temp_pmap,
a->pix,
server.gc,
a->posx,
a->posy,
a->width,
a->height,
0,
0);
} else {
a->_clear(a);
}
cairo_surface_t *cs = cairo_xlib_surface_create(server.display, a->pix, server.visual, a->width, a->height);
cairo_t *c = cairo_create(cs);
draw_background(a, c);
if (a->_draw_foreground)
a->_draw_foreground(a, c);
cairo_destroy(c);
cairo_surface_destroy(cs);
}
void draw_background(Area *a, cairo_t *c)
{
if ((a->bg->fill_color.alpha > 0.0) ||
(panel_config.mouse_effects && (a->has_mouse_over_effect || a->has_mouse_press_effect))) {
if (a->mouse_state == MOUSE_OVER)
cairo_set_source_rgba(c,
a->bg->fill_color_hover.rgb[0],
a->bg->fill_color_hover.rgb[1],
a->bg->fill_color_hover.rgb[2],
a->bg->fill_color_hover.alpha);
else if (a->mouse_state == MOUSE_DOWN)
cairo_set_source_rgba(c,
a->bg->fill_color_pressed.rgb[0],
a->bg->fill_color_pressed.rgb[1],
a->bg->fill_color_pressed.rgb[2],
a->bg->fill_color_pressed.alpha);
else
cairo_set_source_rgba(c,
a->bg->fill_color.rgb[0],
a->bg->fill_color.rgb[1],
a->bg->fill_color.rgb[2],
a->bg->fill_color.alpha);
// Not sure about this
draw_rect(c,
left_border_width(a),
top_border_width(a),
a->width - left_right_border_width(a),
a->height - top_bottom_border_width(a),
a->bg->border.radius - a->bg->border.width / 1.571);
cairo_fill(c);
}
for (GList *l = a->gradient_instances_by_state[a->mouse_state]; l; l = l->next) {
GradientInstance *gi = (GradientInstance *)l->data;
if (!gi->pattern)
update_gradient(gi);
cairo_set_source(c, gi->pattern);
draw_rect(c,
left_border_width(a),
top_border_width(a),
a->width - left_right_border_width(a),
a->height - top_bottom_border_width(a),
a->bg->border.radius - a->bg->border.width / 1.571);
cairo_fill(c);
}
if (a->bg->border.width > 0) {
cairo_set_line_width(c, a->bg->border.width);
// draw border inside (x, y, width, height)
if (a->mouse_state == MOUSE_OVER)
cairo_set_source_rgba(c,
a->bg->border_color_hover.rgb[0],
a->bg->border_color_hover.rgb[1],
a->bg->border_color_hover.rgb[2],
a->bg->border_color_hover.alpha);
else if (a->mouse_state == MOUSE_DOWN)
cairo_set_source_rgba(c,
a->bg->border_color_pressed.rgb[0],
a->bg->border_color_pressed.rgb[1],
a->bg->border_color_pressed.rgb[2],
a->bg->border_color_pressed.alpha);
else
cairo_set_source_rgba(c,
a->bg->border.color.rgb[0],
a->bg->border.color.rgb[1],
a->bg->border.color.rgb[2],
a->bg->border.color.alpha);
draw_rect_on_sides(c,
left_border_width(a) / 2.,
top_border_width(a) / 2.,
a->width - left_right_border_width(a) / 2.,
a->height - top_bottom_border_width(a) / 2.,
a->bg->border.radius,
a->bg->border.mask);
cairo_stroke(c);
}
}
void remove_area(Area *a)
{
Area *area = (Area *)a;
Area *parent = (Area *)area->parent;
free_area_gradient_instances(a);
if (parent) {
parent->children = g_list_remove(parent->children, area);
parent->resize_needed = TRUE;
schedule_panel_redraw();
schedule_redraw(parent);
}
if (mouse_over_area == a) {
mouse_out();
}
}
void add_area(Area *a, Area *parent)
{
g_assert_null(a->parent);
a->parent = parent;
if (parent) {
parent->children = g_list_append(parent->children, a);
parent->resize_needed = TRUE;
schedule_redraw(parent);
}
}
void free_area(Area *a)
{
if (!a)
return;
for (GList *l = a->children; l; l = l->next)
free_area(l->data);
if (a->children) {
g_list_free(a->children);
a->children = NULL;
}
for (int i = 0; i < MOUSE_STATE_COUNT; i++) {
XFreePixmap(server.display, a->pix_by_state[i]);
if (a->pix == a->pix_by_state[i]) {
a->pix = None;
}
a->pix_by_state[i] = None;
}
if (a->pix) {
XFreePixmap(server.display, a->pix);
a->pix = None;
}
if (mouse_over_area == a) {
mouse_over_area = NULL;
}
free_area_gradient_instances(a);
}
void mouse_over(Area *area, int pressed)
{
if (mouse_over_area == area && !area)
return;
MouseState new_state = MOUSE_NORMAL;
if (area) {
if (!pressed) {
new_state = area->has_mouse_over_effect ? MOUSE_OVER : MOUSE_NORMAL;
} else {
new_state =
area->has_mouse_press_effect ? MOUSE_DOWN : area->has_mouse_over_effect ? MOUSE_OVER : MOUSE_NORMAL;
}
}
if (mouse_over_area == area && mouse_over_area->mouse_state == new_state)
return;
mouse_out();
if (new_state == MOUSE_NORMAL)
return;
mouse_over_area = area;
mouse_over_area->mouse_state = new_state;
mouse_over_area->pix = mouse_over_area->pix_by_state[mouse_over_area->mouse_state];
if (!mouse_over_area->pix)
mouse_over_area->_redraw_needed = TRUE;
schedule_panel_redraw();
}
void mouse_out()
{
if (!mouse_over_area)
return;
mouse_over_area->mouse_state = MOUSE_NORMAL;
mouse_over_area->pix = mouse_over_area->pix_by_state[mouse_over_area->mouse_state];
if (!mouse_over_area->pix)
mouse_over_area->_redraw_needed = TRUE;
schedule_panel_redraw();
mouse_over_area = NULL;
}
gboolean area_is_first(void *obj)
{
Area *a = obj;
if (!a->on_screen)
return FALSE;
Panel *panel = a->panel;
Area *node = &panel->area;
while (node) {
if (!node->on_screen || node->width == 0 || node->height == 0)
return FALSE;
if (node == a)
return TRUE;
GList *l = node->children;
node = NULL;
for (; l; l = l->next) {
Area *child = l->data;
if (!child->on_screen || child->width == 0 || child->height == 0)
continue;
node = child;
break;
}
}
return FALSE;
}
gboolean area_is_last(void *obj)
{
Area *a = obj;
if (!a->on_screen)
return FALSE;
Panel *panel = a->panel;
Area *node = &panel->area;
while (node) {
if (!node->on_screen || node->width == 0 || node->height == 0)
return FALSE;
if (node == a)
return TRUE;
GList *l = node->children;
node = NULL;
for (; l; l = l->next) {
Area *child = l->data;
if (!child->on_screen || child->width == 0 || child->height == 0)
continue;
node = child;
}
}
return FALSE;
}
gboolean area_is_under_mouse(void *obj, int x, int y)
{
Area *a = obj;
if (!a->on_screen || a->width == 0 || a->height == 0)
return FALSE;
if (a->_is_under_mouse)
return a->_is_under_mouse(a, x, y);
return x >= a->posx && x <= (a->posx + a->width) && y >= a->posy && y <= (a->posy + a->height);
}
gboolean full_width_area_is_under_mouse(void *obj, int x, int y)
{
Area *a = obj;
if (!a->on_screen)
return FALSE;
if (a->_is_under_mouse && a->_is_under_mouse != full_width_area_is_under_mouse)
return a->_is_under_mouse(a, x, y);
if (panel_horizontal)
return (x >= a->posx) && (x <= a->posx + a->width);
else
return (y >= a->posy) && (y <= a->posy + a->height);
}
Area *find_area_under_mouse(void *root, int x, int y)
{
Area *result = root;
Area *new_result = result;
do {
result = new_result;
GList *it = result->children;
while (it) {
Area *a = (Area *)it->data;
if (area_is_under_mouse(a, x, y)) {
new_result = a;
break;
}
it = it->next;
}
} while (new_result != result);
return result;
}
int left_border_width(Area *a)
{
return left_bg_border_width(a->bg);
}
int right_border_width(Area *a)
{
return right_bg_border_width(a->bg);
}
int top_border_width(Area *a)
{
return top_bg_border_width(a->bg);
}
int bottom_border_width(Area *a)
{
return bottom_bg_border_width(a->bg);
}
int left_right_border_width(Area *a)
{
return left_right_bg_border_width(a->bg);
}
int top_bottom_border_width(Area *a)
{
return top_bottom_bg_border_width(a->bg);
}
int bg_border_width(Background *bg, int mask)
{
return bg->border.mask & mask ? bg->border.width : 0;
}
int left_bg_border_width(Background *bg)
{
return bg_border_width(bg, BORDER_LEFT);
}
int top_bg_border_width(Background *bg)
{
return bg_border_width(bg, BORDER_TOP);
}
int right_bg_border_width(Background *bg)
{
return bg_border_width(bg, BORDER_RIGHT);
}
int bottom_bg_border_width(Background *bg)
{
return bg_border_width(bg, BORDER_BOTTOM);
}
int left_right_bg_border_width(Background *bg)
{
return left_bg_border_width(bg) + right_bg_border_width(bg);
}
int top_bottom_bg_border_width(Background *bg)
{
return top_bg_border_width(bg) + bottom_bg_border_width(bg);
}
void area_dump_geometry(Area *area, int indent)
{
fprintf(stderr, "%*s%s:\n", indent, "", area->name);
indent += 2;
if (!area->on_screen) {
fprintf(stderr, "%*shidden\n", indent, "");
return;
}
fprintf(stderr,
"%*sBox: x = %d, y = %d, w = %d, h = %d, desired size = %d\n",
indent,
"",
area->posx,
area->posy,
area->width,
area->height,
compute_desired_size(area));
fprintf(stderr,
"%*sBorder: left = %d, right = %d, top = %d, bottom = %d\n",
indent,
"",
left_border_width(area),
right_border_width(area),
top_border_width(area),
bottom_border_width(area));
fprintf(stderr,
"%*sPadding: left = right = %d, top = bottom = %d, spacing = %d\n",
indent,
"",
area->paddingxlr,
area->paddingy,
area->paddingx);
if (area->_dump_geometry)
area->_dump_geometry(area, indent);
if (area->children) {
fprintf(stderr, "%*sChildren:\n", indent, "");
indent += 2;
for (GList *l = area->children; l; l = l->next)
area_dump_geometry((Area *)l->data, indent);
}
}
Area *compute_element_area(Area *area, Element element)
{
if (element == ELEMENT_SELF)
return area;
if (element == ELEMENT_PARENT)
return (Area *)area->parent;
if (element == ELEMENT_PANEL)
return (Area *)area->panel;
g_assert_not_reached();
return area;
}
void instantiate_gradient_offsets(GradientInstance *gi, GList *offsets)
{
for (GList *l = offsets; l; l = l->next) {
Offset *offset = (Offset *)l->data;
if (!offset->constant) {
Area *element_area = compute_element_area(gi->area, offset->element);
element_area->dependent_gradients = g_list_append(element_area->dependent_gradients, gi);
}
}
}
void free_gradient_offsets(GradientInstance *gi, GList **offsets)
{
for (GList *l = *offsets; l; l = l->next) {
Offset *offset = (Offset *)l->data;
if (!offset->constant) {
Area *element_area = compute_element_area(gi->area, offset->element);
element_area->dependent_gradients = g_list_remove_all(element_area->dependent_gradients, gi);
}
}
}
void instantiate_gradient_point(GradientInstance *gi, ControlPoint *control)
{
instantiate_gradient_offsets(gi, control->offsets_x);
instantiate_gradient_offsets(gi, control->offsets_y);
instantiate_gradient_offsets(gi, control->offsets_r);
}
void free_gradient_instance_point(GradientInstance *gi, ControlPoint *control)
{
free_gradient_offsets(gi, &control->offsets_x);
free_gradient_offsets(gi, &control->offsets_y);
free_gradient_offsets(gi, &control->offsets_r);
}
void instantiate_gradient(Area *area, GradientClass *g, GradientInstance *gi)
{
g_assert_nonnull(area);
g_assert_nonnull(g);
gi->area = area;
gi->gradient_class = g;
instantiate_gradient_point(gi, &g->from);
instantiate_gradient_point(gi, &g->to);
}
void free_gradient_instance(GradientInstance *gi)
{
if (gi->pattern) {
cairo_pattern_destroy(gi->pattern);
gi->pattern = NULL;
}
free_gradient_instance_point(gi, &gi->gradient_class->from);
free_gradient_instance_point(gi, &gi->gradient_class->to);
gi->gradient_class = NULL;
}
void instantiate_area_gradients(Area *area)
{
if (debug_gradients)
fprintf(stderr, "Initializing gradients for area %s\n", area->name);
for (int i = 0; i < MOUSE_STATE_COUNT; i++) {
g_assert_null(area->gradient_instances_by_state[i]);
GradientClass *g = area->bg->gradients[i];
if (!g)
continue;
GradientInstance *gi = (GradientInstance *)calloc(1, sizeof(GradientInstance));
instantiate_gradient(area, g, gi);
area->gradient_instances_by_state[i] = g_list_append(area->gradient_instances_by_state[i], gi);
}
}
void free_area_gradient_instances(Area *area)
{
if (debug_gradients)
fprintf(stderr, "Freeing gradients for area %s\n", area->name);
for (int i = 0; i < MOUSE_STATE_COUNT; i++) {
for (GList *l = area->gradient_instances_by_state[i]; l; l = l->next) {
GradientInstance *gi = (GradientInstance *)l->data;
free_gradient_instance(gi);
}
g_list_free_full(area->gradient_instances_by_state[i], free);
area->gradient_instances_by_state[i] = NULL;
}
g_assert_null(area->dependent_gradients);
}
double compute_control_point_offset(Area *area, Offset *offset)
{
if (offset->constant)
return offset->constant_value;
Area *element_area = compute_element_area(area, offset->element);
Area *parent_area = ((Area *)area->parent);
g_assert_nonnull(element_area);
g_assert_nonnull(parent_area);
double width = element_area->width;
double height = element_area->height;
double radius = sqrt(element_area->width * element_area->width + element_area->height * element_area->height) / 2.0;
double left, top;
if (offset->element == ELEMENT_SELF) {
left = 0;
top = 0;
} else if (offset->element == ELEMENT_PARENT) {
left = parent_area->posx - area->posx;
top = parent_area->posy - area->posy;
} else if (offset->element == ELEMENT_PANEL) {
left = 0 - area->posx;
top = 0 - area->posy;
}
double right = left + width;
double bottom = top + height;
double center_x = left + 0.5 * width;
double center_y = top + 0.5 * height;
if (offset->variable == SIZE_WIDTH)
return width * offset->multiplier;
if (offset->variable == SIZE_HEIGHT)
return height * offset->multiplier;
if (offset->variable == SIZE_RADIUS)
return radius * offset->multiplier;
if (offset->variable == SIZE_LEFT)
return left * offset->multiplier;
if (offset->variable == SIZE_RIGHT)
return right * offset->multiplier;
if (offset->variable == SIZE_TOP)
return top * offset->multiplier;
if (offset->variable == SIZE_BOTTOM)
return bottom * offset->multiplier;
if (offset->variable == SIZE_CENTERX)
return center_x * offset->multiplier;
if (offset->variable == SIZE_CENTERY)
return center_y * offset->multiplier;
g_assert_not_reached();
return 0;
}
double compute_control_point_offsets(GradientInstance *gi, GList *offsets)
{
double result = 0;
for (GList *l = offsets; l; l = l->next) {
Offset *offset = (Offset *)l->data;
result += compute_control_point_offset(gi->area, offset);
}
return result;
}
void compute_control_point(GradientInstance *gi, ControlPoint *control, double *x, double *y, double *r)
{
*x = compute_control_point_offsets(gi, control->offsets_x);
*y = compute_control_point_offsets(gi, control->offsets_y);
*r = compute_control_point_offsets(gi, control->offsets_r);
}
void update_gradient(GradientInstance *gi)
{
if (gi->pattern) {
return;
cairo_pattern_destroy(gi->pattern);
gi->pattern = NULL;
}
double from_x, from_y, from_r;
compute_control_point(gi, &gi->gradient_class->from, &from_x, &from_y, &from_r);
double to_x, to_y, to_r;
compute_control_point(gi, &gi->gradient_class->to, &to_x, &to_y, &to_r);
if (gi->gradient_class->type == GRADIENT_VERTICAL || gi->gradient_class->type == GRADIENT_HORIZONTAL) {
gi->pattern = cairo_pattern_create_linear(from_x, from_y, to_x, to_y);
if (debug_gradients)
fprintf(stderr,
"Creating linear gradient for area %s: %f %f, %f %f\n",
gi->area->name,
from_x,
from_y,
to_x,
to_y);
} else if (gi->gradient_class->type == GRADIENT_CENTERED) {
gi->pattern = cairo_pattern_create_radial(from_x, from_y, from_r, to_x, to_y, to_r);
if (debug_gradients)
fprintf(stderr,
"Creating radial gradient for area %s: %f %f %f, %f %f %f\n",
gi->area->name,
from_x,
from_y,
from_r,
to_x,
to_y,
to_r);
} else {
g_assert_not_reached();
}
if (debug_gradients)
fprintf(stderr,
"Adding color stop at offset %f: %f %f %f %f\n",
0.0,
gi->gradient_class->start_color.rgb[0],
gi->gradient_class->start_color.rgb[1],
gi->gradient_class->start_color.rgb[2],
gi->gradient_class->start_color.alpha);
cairo_pattern_add_color_stop_rgba(gi->pattern,
0,
gi->gradient_class->start_color.rgb[0],
gi->gradient_class->start_color.rgb[1],
gi->gradient_class->start_color.rgb[2],
gi->gradient_class->start_color.alpha);
for (GList *l = gi->gradient_class->extra_color_stops; l; l = l->next) {
ColorStop *color_stop = (ColorStop *)l->data;
if (debug_gradients)
fprintf(stderr,
"Adding color stop at offset %f: %f %f %f %f\n",
color_stop->offset,
color_stop->color.rgb[0],
color_stop->color.rgb[1],
color_stop->color.rgb[2],
color_stop->color.alpha);
cairo_pattern_add_color_stop_rgba(gi->pattern,
color_stop->offset,
color_stop->color.rgb[0],
color_stop->color.rgb[1],
color_stop->color.rgb[2],
color_stop->color.alpha);
}
if (debug_gradients)
fprintf(stderr,
"Adding color stop at offset %f: %f %f %f %f\n",
1.0,
gi->gradient_class->end_color.rgb[0],
gi->gradient_class->end_color.rgb[1],
gi->gradient_class->end_color.rgb[2],
gi->gradient_class->end_color.alpha);
cairo_pattern_add_color_stop_rgba(gi->pattern,
1.0,
gi->gradient_class->end_color.rgb[0],
gi->gradient_class->end_color.rgb[1],
gi->gradient_class->end_color.rgb[2],
gi->gradient_class->end_color.alpha);
}