/************************************************************************** * * Tint2 : area * * Copyright (C) 2008 thierry lorthiois (lorthiois@bbsoft.fr) from Omega distribution * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. **************************************************************************/ #include #include #include #include #include #include #include #include #include #include "area.h" #include "server.h" #include "panel.h" #include "common.h" Area *mouse_over_area = NULL; void init_background(Background *bg) { memset(bg, 0, sizeof(Background)); bg->border.mask = BORDER_TOP | BORDER_BOTTOM | BORDER_LEFT | BORDER_RIGHT; } void initialize_positions(void *obj, int offset) { Area *a = (Area *)obj; for (GList *l = a->children; l; l = l->next) { Area *child = ((Area *)l->data); if (panel_horizontal) { child->posy = offset + top_border_width(a) + a->paddingy; child->height = a->height - 2 * a->paddingy - top_bottom_border_width(a); if (child->_on_change_layout) child->_on_change_layout(child); initialize_positions(child, child->posy); } else { child->posx = offset + left_border_width(a) + a->paddingy; child->width = a->width - 2 * a->paddingy - left_right_border_width(a); if (child->_on_change_layout) child->_on_change_layout(child); initialize_positions(child, child->posx); } } } void relayout_fixed(Area *a) { if (!a->on_screen) return; // Children are resized before the parent GList *l; for (l = a->children; l; l = l->next) relayout_fixed(l->data); // Recalculate size a->_changed = FALSE; if (a->resize_needed && a->size_mode == LAYOUT_FIXED) { a->resize_needed = FALSE; if (a->_resize && a->_resize(a)) { // The size has changed => resize needed for the parent if (a->parent) ((Area *)a->parent)->resize_needed = TRUE; a->_changed = TRUE; } } } void relayout_dynamic(Area *a, int level) { if (!a->on_screen) return; // Area is resized before its children if (a->resize_needed && a->size_mode == LAYOUT_DYNAMIC) { a->resize_needed = FALSE; if (a->_resize) { if (a->_resize(a)) a->_changed = TRUE; // resize children with LAYOUT_DYNAMIC for (GList *l = a->children; l; l = l->next) { Area *child = ((Area *)l->data); if (child->size_mode == LAYOUT_DYNAMIC && child->children) child->resize_needed = 1; } } } // Layout children if (a->children) { if (a->alignment == ALIGN_LEFT) { int pos = (panel_horizontal ? a->posx + left_border_width(a) : a->posy + top_border_width(a)) + a->paddingxlr; for (GList *l = a->children; l; l = l->next) { Area *child = ((Area *)l->data); if (!child->on_screen) continue; if (panel_horizontal) { if (pos != child->posx) { // pos changed => redraw child->posx = pos; child->_changed = TRUE; } } else { if (pos != child->posy) { // pos changed => redraw child->posy = pos; child->_changed = TRUE; } } relayout_dynamic(child, level + 1); pos += panel_horizontal ? child->width + a->paddingx : child->height + a->paddingx; } } else if (a->alignment == ALIGN_RIGHT) { int pos = (panel_horizontal ? a->posx + a->width - right_border_width(a) : a->posy + a->height - bottom_border_width(a)) - a->paddingxlr; for (GList *l = g_list_last(a->children); l; l = l->prev) { Area *child = ((Area *)l->data); if (!child->on_screen) continue; pos -= panel_horizontal ? child->width : child->height; if (panel_horizontal) { if (pos != child->posx) { // pos changed => redraw child->posx = pos; child->_changed = TRUE; } } else { if (pos != child->posy) { // pos changed => redraw child->posy = pos; child->_changed = TRUE; } } relayout_dynamic(child, level + 1); pos -= a->paddingx; } } else if (a->alignment == ALIGN_CENTER) { int children_size = 0; for (GList *l = a->children; l; l = l->next) { Area *child = ((Area *)l->data); if (!child->on_screen) continue; children_size += panel_horizontal ? child->width : child->height; children_size += (l == a->children) ? 0 : a->paddingx; } int pos = (panel_horizontal ? a->posx + left_border_width(a) : a->posy + top_border_width(a)) + a->paddingxlr; pos += ((panel_horizontal ? a->width : a->height) - children_size) / 2; for (GList *l = a->children; l; l = l->next) { Area *child = ((Area *)l->data); if (!child->on_screen) continue; if (panel_horizontal) { if (pos != child->posx) { // pos changed => redraw child->posx = pos; child->_changed = TRUE; } } else { if (pos != child->posy) { // pos changed => redraw child->posy = pos; child->_changed = TRUE; } } relayout_dynamic(child, level + 1); pos += panel_horizontal ? child->width + a->paddingx : child->height + a->paddingx; } } } if (a->_changed) { // pos/size changed a->_redraw_needed = TRUE; if (a->_on_change_layout) a->_on_change_layout(a); } } void relayout(Area *a) { relayout_fixed(a); relayout_dynamic(a, 1); } void draw_tree(Area *a) { if (!a->on_screen) return; if (a->_redraw_needed) { a->_redraw_needed = FALSE; draw(a); } if (a->pix) XCopyArea(server.display, a->pix, ((Panel *)a->panel)->temp_pmap, server.gc, 0, 0, a->width, a->height, a->posx, a->posy); for (GList *l = a->children; l; l = l->next) draw_tree((Area *)l->data); } int relayout_with_constraint(Area *a, int maximum_size) { int fixed_children_count = 0; int dynamic_children_count = 0; if (panel_horizontal) { // detect free size for LAYOUT_DYNAMIC Areas int size = a->width - 2 * a->paddingxlr - left_right_border_width(a); for (GList *l = a->children; l; l = l->next) { Area *child = (Area *)l->data; if (child->on_screen && child->size_mode == LAYOUT_FIXED) { size -= child->width; fixed_children_count++; } if (child->on_screen && child->size_mode == LAYOUT_DYNAMIC) dynamic_children_count++; } if (fixed_children_count + dynamic_children_count > 0) size -= (fixed_children_count + dynamic_children_count - 1) * a->paddingx; int width = 0; int modulo = 0; if (dynamic_children_count > 0) { width = size / dynamic_children_count; modulo = size % dynamic_children_count; if (width > maximum_size && maximum_size > 0) { width = maximum_size; modulo = 0; } } // Resize LAYOUT_DYNAMIC objects for (GList *l = a->children; l; l = l->next) { Area *child = (Area *)l->data; if (child->on_screen && child->size_mode == LAYOUT_DYNAMIC) { int old_width = child->width; child->width = width; if (modulo) { child->width++; modulo--; } if (child->width != old_width) child->_changed = TRUE; } } } else { // detect free size for LAYOUT_DYNAMIC's Area int size = a->height - 2 * a->paddingxlr - top_bottom_border_width(a); for (GList *l = a->children; l; l = l->next) { Area *child = (Area *)l->data; if (child->on_screen && child->size_mode == LAYOUT_FIXED) { size -= child->height; fixed_children_count++; } if (child->on_screen && child->size_mode == LAYOUT_DYNAMIC) dynamic_children_count++; } if (fixed_children_count + dynamic_children_count > 0) size -= (fixed_children_count + dynamic_children_count - 1) * a->paddingx; int height = 0; int modulo = 0; if (dynamic_children_count) { height = size / dynamic_children_count; modulo = size % dynamic_children_count; if (height > maximum_size && maximum_size != 0) { height = maximum_size; modulo = 0; } } // Resize LAYOUT_DYNAMIC objects for (GList *l = a->children; l; l = l->next) { Area *child = (Area *)l->data; if (child->on_screen && child->size_mode == LAYOUT_DYNAMIC) { int old_height = child->height; child->height = height; if (modulo) { child->height++; modulo--; } if (child->height != old_height) child->_changed = TRUE; } } } return 0; } void schedule_redraw(Area *a) { a->_redraw_needed = TRUE; if (a->has_mouse_over_effect) { for (int i = 0; i < MOUSE_STATE_COUNT; i++) { XFreePixmap(server.display, a->pix_by_state[i]); if (a->pix == a->pix_by_state[i]) a->pix = None; a->pix_by_state[i] = None; } if (a->pix) { XFreePixmap(server.display, a->pix); a->pix = None; } } for (GList *l = a->children; l; l = l->next) schedule_redraw((Area *)l->data); panel_refresh = TRUE; } void hide(Area *a) { Area *parent = (Area *)a->parent; a->on_screen = FALSE; if (parent) parent->resize_needed = TRUE; if (panel_horizontal) a->width = 0; else a->height = 0; } void show(Area *a) { Area *parent = (Area *)a->parent; a->on_screen = TRUE; if (parent) parent->resize_needed = TRUE; a->resize_needed = TRUE; } void update_dependent_gradients(Area *a) { if (!a->on_screen) return; if (a->_changed) { for (GList *l = a->dependent_gradients; l; l = l->next) { GradientInstance *gi = (GradientInstance *)l->data; update_gradient(gi); } } for (GList *l = a->children; l; l = l->next) update_dependent_gradients((Area *)l->data); } void draw(Area *a) { if (a->_changed) { // On resize/move, invalidate cached pixmaps for (int i = 0; i < MOUSE_STATE_COUNT; i++) { XFreePixmap(server.display, a->pix_by_state[i]); if (a->pix == a->pix_by_state[i]) { a->pix = None; } a->pix_by_state[i] = None; } if (a->pix) { XFreePixmap(server.display, a->pix); a->pix = None; } } if (a->pix) { XFreePixmap(server.display, a->pix); if (a->pix_by_state[a->has_mouse_over_effect ? a->mouse_state : 0] != a->pix) XFreePixmap(server.display, a->pix_by_state[a->has_mouse_over_effect ? a->mouse_state : 0]); } a->pix = XCreatePixmap(server.display, server.root_win, a->width, a->height, server.depth); a->pix_by_state[a->has_mouse_over_effect ? a->mouse_state : 0] = a->pix; if (!a->_clear) { // Add layer of root pixmap (or clear pixmap if real_transparency==true) if (server.real_transparency) clear_pixmap(a->pix, 0, 0, a->width, a->height); XCopyArea(server.display, ((Panel *)a->panel)->temp_pmap, a->pix, server.gc, a->posx, a->posy, a->width, a->height, 0, 0); } else { a->_clear(a); } cairo_surface_t *cs = cairo_xlib_surface_create(server.display, a->pix, server.visual, a->width, a->height); cairo_t *c = cairo_create(cs); draw_background(a, c); if (a->_draw_foreground) a->_draw_foreground(a, c); cairo_destroy(c); cairo_surface_destroy(cs); } void draw_background(Area *a, cairo_t *c) { if ((a->bg->fill_color.alpha > 0.0) || (panel_config.mouse_effects && (a->has_mouse_over_effect || a->has_mouse_press_effect))) { if (a->mouse_state == MOUSE_OVER) cairo_set_source_rgba(c, a->bg->fill_color_hover.rgb[0], a->bg->fill_color_hover.rgb[1], a->bg->fill_color_hover.rgb[2], a->bg->fill_color_hover.alpha); else if (a->mouse_state == MOUSE_DOWN) cairo_set_source_rgba(c, a->bg->fill_color_pressed.rgb[0], a->bg->fill_color_pressed.rgb[1], a->bg->fill_color_pressed.rgb[2], a->bg->fill_color_pressed.alpha); else cairo_set_source_rgba(c, a->bg->fill_color.rgb[0], a->bg->fill_color.rgb[1], a->bg->fill_color.rgb[2], a->bg->fill_color.alpha); // Not sure about this draw_rect(c, left_border_width(a), top_border_width(a), a->width - left_right_border_width(a), a->height - top_bottom_border_width(a), a->bg->border.radius - a->bg->border.width / 1.571); cairo_fill(c); } for (GList *l = a->gradient_instances; l; l = l->next) { GradientInstance *gi = (GradientInstance *)l->data; if (!gi->pattern) update_gradient(gi); cairo_set_source(c, gi->pattern); draw_rect(c, left_border_width(a), top_border_width(a), a->width - left_right_border_width(a), a->height - top_bottom_border_width(a), a->bg->border.radius - a->bg->border.width / 1.571); cairo_fill(c); } if (a->bg->border.width > 0) { cairo_set_line_width(c, a->bg->border.width); // draw border inside (x, y, width, height) if (a->mouse_state == MOUSE_OVER) cairo_set_source_rgba(c, a->bg->border_color_hover.rgb[0], a->bg->border_color_hover.rgb[1], a->bg->border_color_hover.rgb[2], a->bg->border_color_hover.alpha); else if (a->mouse_state == MOUSE_DOWN) cairo_set_source_rgba(c, a->bg->border_color_pressed.rgb[0], a->bg->border_color_pressed.rgb[1], a->bg->border_color_pressed.rgb[2], a->bg->border_color_pressed.alpha); else cairo_set_source_rgba(c, a->bg->border.color.rgb[0], a->bg->border.color.rgb[1], a->bg->border.color.rgb[2], a->bg->border.color.alpha); draw_rect_on_sides(c, left_border_width(a) / 2., top_border_width(a) / 2., a->width - left_right_border_width(a) / 2., a->height - top_bottom_border_width(a) / 2., a->bg->border.radius, a->bg->border.mask); cairo_stroke(c); } } void remove_area(Area *a) { Area *area = (Area *)a; Area *parent = (Area *)area->parent; free_area_gradient_instances(a); if (parent) { parent->children = g_list_remove(parent->children, area); parent->resize_needed = TRUE; panel_refresh = TRUE; schedule_redraw(parent); } if (mouse_over_area == a) { mouse_out(); } } void add_area(Area *a, Area *parent) { g_assert_null(a->parent); a->parent = parent; if (parent) { parent->children = g_list_append(parent->children, a); parent->resize_needed = TRUE; schedule_redraw(parent); panel_refresh = TRUE; } } void free_area(Area *a) { if (!a) return; for (GList *l = a->children; l; l = l->next) free_area(l->data); if (a->children) { g_list_free(a->children); a->children = NULL; } for (int i = 0; i < MOUSE_STATE_COUNT; i++) { XFreePixmap(server.display, a->pix_by_state[i]); if (a->pix == a->pix_by_state[i]) { a->pix = None; } a->pix_by_state[i] = None; } if (a->pix) { XFreePixmap(server.display, a->pix); a->pix = None; } if (mouse_over_area == a) { mouse_over_area = NULL; } free_area_gradient_instances(a); if (debug_gradients) fprintf(stderr, YELLOW "freeing gradient list %p" RESET "\n", (void*)a->gradients); g_list_free(a->gradients); a->gradients = NULL; } void mouse_over(Area *area, int pressed) { if (mouse_over_area == area && !area) return; MouseState new_state = MOUSE_NORMAL; if (area) { if (!pressed) { new_state = area->has_mouse_over_effect ? MOUSE_OVER : MOUSE_NORMAL; } else { new_state = area->has_mouse_press_effect ? MOUSE_DOWN : area->has_mouse_over_effect ? MOUSE_OVER : MOUSE_NORMAL; } } if (mouse_over_area == area && mouse_over_area->mouse_state == new_state) return; mouse_out(); if (new_state == MOUSE_NORMAL) return; mouse_over_area = area; mouse_over_area->mouse_state = new_state; mouse_over_area->pix = mouse_over_area->pix_by_state[mouse_over_area->has_mouse_over_effect ? mouse_over_area->mouse_state : 0]; if (!mouse_over_area->pix) mouse_over_area->_redraw_needed = TRUE; panel_refresh = TRUE; } void mouse_out() { if (!mouse_over_area) return; mouse_over_area->mouse_state = MOUSE_NORMAL; mouse_over_area->pix = mouse_over_area->pix_by_state[mouse_over_area->has_mouse_over_effect ? mouse_over_area->mouse_state : 0]; if (!mouse_over_area->pix) mouse_over_area->_redraw_needed = TRUE; panel_refresh = TRUE; mouse_over_area = NULL; } gboolean area_is_first(void *obj) { Area *a = obj; if (!a->on_screen) return FALSE; Panel *panel = a->panel; Area *node = &panel->area; while (node) { if (!node->on_screen || node->width == 0 || node->height == 0) return FALSE; if (node == a) return TRUE; GList *l = node->children; node = NULL; for (; l; l = l->next) { Area *child = l->data; if (!child->on_screen || child->width == 0 || child->height == 0) continue; node = child; break; } } return FALSE; } gboolean area_is_last(void *obj) { Area *a = obj; if (!a->on_screen) return FALSE; Panel *panel = a->panel; Area *node = &panel->area; while (node) { if (!node->on_screen || node->width == 0 || node->height == 0) return FALSE; if (node == a) return TRUE; GList *l = node->children; node = NULL; for (; l; l = l->next) { Area *child = l->data; if (!child->on_screen || child->width == 0 || child->height == 0) continue; node = child; } } return FALSE; } gboolean area_is_under_mouse(void *obj, int x, int y) { Area *a = obj; if (!a->on_screen || a->width == 0 || a->height == 0) return FALSE; if (a->_is_under_mouse) return a->_is_under_mouse(a, x, y); return x >= a->posx && x <= (a->posx + a->width) && y >= a->posy && y <= (a->posy + a->height); } gboolean full_width_area_is_under_mouse(void *obj, int x, int y) { Area *a = obj; if (!a->on_screen) return FALSE; if (a->_is_under_mouse && a->_is_under_mouse != full_width_area_is_under_mouse) return a->_is_under_mouse(a, x, y); if (panel_horizontal) return (x >= a->posx) && (x <= a->posx + a->width); else return (y >= a->posy) && (y <= a->posy + a->height); } Area *find_area_under_mouse(void *root, int x, int y) { Area *result = root; Area *new_result = result; do { result = new_result; GList *it = result->children; while (it) { Area *a = (Area *)it->data; if (area_is_under_mouse(a, x, y)) { new_result = a; break; } it = it->next; } } while (new_result != result); return result; } int left_border_width(Area *a) { return left_bg_border_width(a->bg); } int right_border_width(Area *a) { return right_bg_border_width(a->bg); } int top_border_width(Area *a) { return top_bg_border_width(a->bg); } int bottom_border_width(Area *a) { return bottom_bg_border_width(a->bg); } int left_right_border_width(Area *a) { return left_right_bg_border_width(a->bg); } int top_bottom_border_width(Area *a) { return top_bottom_bg_border_width(a->bg); } int bg_border_width(Background *bg, int mask) { return bg->border.mask & mask ? bg->border.width : 0; } int left_bg_border_width(Background *bg) { return bg_border_width(bg, BORDER_LEFT); } int top_bg_border_width(Background *bg) { return bg_border_width(bg, BORDER_TOP); } int right_bg_border_width(Background *bg) { return bg_border_width(bg, BORDER_RIGHT); } int bottom_bg_border_width(Background *bg) { return bg_border_width(bg, BORDER_BOTTOM); } int left_right_bg_border_width(Background *bg) { return left_bg_border_width(bg) + right_bg_border_width(bg); } int top_bottom_bg_border_width(Background *bg) { return top_bg_border_width(bg) + bottom_bg_border_width(bg); } void area_dump_geometry(Area *area, int indent) { fprintf(stderr, "%*s%s:\n", indent, "", area->name); indent += 2; if (!area->on_screen) { fprintf(stderr, "%*shidden\n", indent, ""); return; } fprintf(stderr, "%*sBox: x = %d, y = %d, w = %d, h = %d\n", indent, "", area->posx, area->posy, area->width, area->height); fprintf(stderr, "%*sBorder: left = %d, right = %d, top = %d, bottom = %d\n", indent, "", left_border_width(area), right_border_width(area), top_border_width(area), bottom_border_width(area)); fprintf(stderr, "%*sPadding: left = right = %d, top = bottom = %d, spacing = %d\n", indent, "", area->paddingxlr, area->paddingy, area->paddingx); if (area->_dump_geometry) area->_dump_geometry(area, indent); if (area->children) { fprintf(stderr, "%*sChildren:\n", indent, ""); indent += 2; for (GList *l = area->children; l; l = l->next) area_dump_geometry((Area *)l->data, indent); } } Area *compute_element_area(Area *area, Element element) { if (element == ELEMENT_SELF) return area; if (element == ELEMENT_PARENT) return (Area *)area->parent; if (element == ELEMENT_PANEL) return (Area *)area->panel; g_assert_not_reached(); return area; } void instantiate_gradient_offsets(GradientInstance *gi, GList *offsets) { for (GList *l = offsets; l; l = l->next) { Offset *offset = (Offset *)l->data; if (!offset->constant) { Area *element_area = compute_element_area(gi->area, offset->element); element_area->dependent_gradients = g_list_append(element_area->dependent_gradients, gi); } } } void free_gradient_offsets(GradientInstance *gi, GList **offsets) { for (GList *l = *offsets; l; l = l->next) { Offset *offset = (Offset *)l->data; if (!offset->constant) { Area *element_area = compute_element_area(gi->area, offset->element); element_area->dependent_gradients = g_list_remove_all(element_area->dependent_gradients, gi); } } } void instantiate_gradient_point(GradientInstance *gi, ControlPoint *control) { instantiate_gradient_offsets(gi, control->offsets_x); instantiate_gradient_offsets(gi, control->offsets_y); instantiate_gradient_offsets(gi, control->offsets_r); } void free_gradient_instance_point(GradientInstance *gi, ControlPoint *control) { free_gradient_offsets(gi, &control->offsets_x); free_gradient_offsets(gi, &control->offsets_y); free_gradient_offsets(gi, &control->offsets_r); } void instantiate_gradient(Area *area, GradientClass *g, GradientInstance *gi) { g_assert_nonnull(area); g_assert_nonnull(g); gi->area = area; gi->gradient_class = g; instantiate_gradient_point(gi, &g->from); instantiate_gradient_point(gi, &g->to); } void free_gradient_instance(GradientInstance *gi) { if (gi->pattern) { cairo_pattern_destroy(gi->pattern); gi->pattern = NULL; } free_gradient_instance_point(gi, &gi->gradient_class->from); free_gradient_instance_point(gi, &gi->gradient_class->to); gi->gradient_class = NULL; } void instantiate_area_gradients(Area *area) { g_assert_null(area->gradient_instances); if (debug_gradients) fprintf(stderr, "Initializing gradients for area %s\n", area->name); for (GList *l = area->gradients; l; l = l->next) { GradientClass *g = (GradientClass *)l->data; GradientInstance *gi = (GradientInstance *)calloc(1, sizeof(GradientInstance)); instantiate_gradient(area, g, gi); area->gradient_instances = g_list_append(area->gradient_instances, gi); } } void free_area_gradient_instances(Area *area) { if (debug_gradients) fprintf(stderr, "Freeing gradients for area %s\n", area->name); for (GList *l = area->gradient_instances; l; l = l->next) { GradientInstance *gi = (GradientInstance *)l->data; free_gradient_instance(gi); } g_list_free_full(area->gradient_instances, free); area->gradient_instances = NULL; g_assert_null(area->dependent_gradients); } double compute_control_point_offset(Area *area, Offset *offset) { if (offset->constant) return offset->constant_value; Area *element_area = compute_element_area(area, offset->element); Area *parent_area = ((Area *)area->parent); g_assert_nonnull(element_area); g_assert_nonnull(parent_area); double width = element_area->width; double height = element_area->height; double radius = sqrt(element_area->width * element_area->width + element_area->height * element_area->height) / 2.0; double left, top; if (offset->element == ELEMENT_SELF) { left = 0; top = 0; } else if (offset->element == ELEMENT_PARENT) { left = parent_area->posx - area->posx; top = parent_area->posy - area->posy; } else if (offset->element == ELEMENT_PANEL) { left = 0 - area->posx; top = 0 - area->posy; } double right = left + width; double bottom = top + height; double center_x = left + 0.5 * width; double center_y = top + 0.5 * height; if (offset->variable == SIZE_WIDTH) return width * offset->multiplier; if (offset->variable == SIZE_HEIGHT) return height * offset->multiplier; if (offset->variable == SIZE_RADIUS) return radius * offset->multiplier; if (offset->variable == SIZE_LEFT) return left * offset->multiplier; if (offset->variable == SIZE_RIGHT) return right * offset->multiplier; if (offset->variable == SIZE_TOP) return top * offset->multiplier; if (offset->variable == SIZE_BOTTOM) return bottom * offset->multiplier; if (offset->variable == SIZE_CENTERX) return center_x * offset->multiplier; if (offset->variable == SIZE_CENTERY) return center_y * offset->multiplier; g_assert_not_reached(); return 0; } double compute_control_point_offsets(GradientInstance *gi, GList *offsets) { double result = 0; for (GList *l = offsets; l; l = l->next) { Offset *offset = (Offset *)l->data; result += compute_control_point_offset(gi->area, offset); } return result; } void compute_control_point(GradientInstance *gi, ControlPoint *control, double *x, double *y, double *r) { *x = compute_control_point_offsets(gi, control->offsets_x); *y = compute_control_point_offsets(gi, control->offsets_y); *r = compute_control_point_offsets(gi, control->offsets_r); } void update_gradient(GradientInstance *gi) { if (gi->pattern) { return; cairo_pattern_destroy(gi->pattern); gi->pattern = NULL; } schedule_redraw(gi->area); double from_x, from_y, from_r; compute_control_point(gi, &gi->gradient_class->from, &from_x, &from_y, &from_r); double to_x, to_y, to_r; compute_control_point(gi, &gi->gradient_class->to, &to_x, &to_y, &to_r); if (gi->gradient_class->type == GRADIENT_VERTICAL || gi->gradient_class->type == GRADIENT_HORIZONTAL || gi->gradient_class->type == GRADIENT_LINEAR) { gi->pattern = cairo_pattern_create_linear(from_x, from_y, to_x, to_y); if (debug_gradients) fprintf(stderr, "Creating linear gradient for area %s: %f %f, %f %f\n", gi->area->name, from_x, from_y, to_x, to_y); } else if (gi->gradient_class->type == GRADIENT_CENTERED || gi->gradient_class->type == GRADIENT_RADIAL) { gi->pattern = cairo_pattern_create_radial(from_x, from_y, from_r, to_x, to_y, to_r); if (debug_gradients) fprintf(stderr, "Creating radial gradient for area %s: %f %f %f, %f %f %f\n", gi->area->name, from_x, from_y, from_r, to_x, to_y, to_r); } else { g_assert_not_reached(); } if (debug_gradients) fprintf(stderr, "Adding color stop at offset %f: %f %f %f %f\n", 0.0, gi->gradient_class->start_color.rgb[0], gi->gradient_class->start_color.rgb[1], gi->gradient_class->start_color.rgb[2], gi->gradient_class->start_color.alpha); cairo_pattern_add_color_stop_rgba(gi->pattern, 0, gi->gradient_class->start_color.rgb[0], gi->gradient_class->start_color.rgb[1], gi->gradient_class->start_color.rgb[2], gi->gradient_class->start_color.alpha); for (GList *l = gi->gradient_class->extra_color_stops; l; l = l->next) { ColorStop *color_stop = (ColorStop *)l->data; if (debug_gradients) fprintf(stderr, "Adding color stop at offset %f: %f %f %f %f\n", color_stop->offset, color_stop->color.rgb[0], color_stop->color.rgb[1], color_stop->color.rgb[2], color_stop->color.alpha); cairo_pattern_add_color_stop_rgba(gi->pattern, color_stop->offset, color_stop->color.rgb[0], color_stop->color.rgb[1], color_stop->color.rgb[2], color_stop->color.alpha); } if (debug_gradients) fprintf(stderr, "Adding color stop at offset %f: %f %f %f %f\n", 1.0, gi->gradient_class->end_color.rgb[0], gi->gradient_class->end_color.rgb[1], gi->gradient_class->end_color.rgb[2], gi->gradient_class->end_color.alpha); cairo_pattern_add_color_stop_rgba(gi->pattern, 1.0, gi->gradient_class->end_color.rgb[0], gi->gradient_class->end_color.rgb[1], gi->gradient_class->end_color.rgb[2], gi->gradient_class->end_color.alpha); schedule_redraw(gi->area); }