openbox/obrender/imagecache.c
Kadlcik Libor 0352abfa88 This patch implements support for icons in user-defined menus into Openbox
Image loading is done using the Imlib2 library.
I chose Imlib2 because it's pretty fast, it's easy to use, supports many file
formats (tested xpm, gif, jpeg, png) and doesn't introduce too much bloat (it
depends :)).

I ported the patch to 3.4.7-pre3 and added some enhancements. Caching is much
better now, and icons can be disabled at compile time using --disable-imlib2
option.

What's new?
Syntax of configuration files (namely rc.xml and menu.xml) has been changed
slightly to allow users to associate icons to menu entries. This is done by
specifying path to icon file in the new "icon" attribute in "<item>" element,
e.g:
<item label="Vim" icon="/usr/share/pixmaps/vim-32.xpm">
  <action name="Execute"><execute>x-terminal-emulator -T Vim -e
vim</execute></action>
</item>

If user doesn't want to display any icons in his user-defined menus, he/she can
disable icons in rc.xml, inside "<menu>" section:
<menu>
 ...
  <showIcons>no</showIcons>
 ...
</menu>
Default value is "yes".
(New boolean variable "config_menu_user_show_icons" has been added to source
code.)

An icon is loaded (using menu_item_attach_icon()) when a new entry of menu is
created. Fortunately, I haven't notice any performance problems because of this
:).
2010-01-08 17:55:19 -05:00

146 lines
4.1 KiB
C

/* -*- indent-tabs-mode: nil; tab-width: 4; c-basic-offset: 4; -*-
imagecache.c for the Openbox window manager
Copyright (c) 2008 Dana Jansens
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
See the COPYING file for a copy of the GNU General Public License.
*/
#include "render.h"
#include "imagecache.h"
#include "image.h"
static gboolean RrImagePicEqual(const RrImagePic *p1,
const RrImagePic *p2);
RrImageCache* RrImageCacheNew(gint max_resized_saved)
{
RrImageCache *self;
g_assert(max_resized_saved >= 0);
self = g_new(RrImageCache, 1);
self->ref = 1;
self->max_resized_saved = max_resized_saved;
self->table = g_hash_table_new((GHashFunc)RrImagePicHash,
(GEqualFunc)RrImagePicEqual);
self->file_name_table = NULL;
return self;
}
void RrImageCacheRef(RrImageCache *self)
{
++self->ref;
}
void RrImageCacheUnref(RrImageCache *self)
{
if (self && --self->ref == 0) {
g_assert(g_hash_table_size(self->table) == 0);
g_assert(self->file_name_table == NULL);
g_hash_table_unref(self->table);
g_free(self);
}
}
/*! Finds an image in the cache, if it is already in there */
RrImage* RrImageCacheFind(RrImageCache *self,
RrPixel32 *data, gint w, gint h)
{
RrImagePic pic;
RrImagePicInit(&pic, w, h, data);
return g_hash_table_lookup(self->table, &pic);
}
#define hashsize(n) ((RrPixel32)1<<(n))
#define hashmask(n) (hashsize(n)-1)
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
/* mix -- mix 3 32-bit values reversibly. */
#define mix(a,b,c) \
{ \
a -= c; a ^= rot(c, 4); c += b; \
b -= a; b ^= rot(a, 6); a += c; \
c -= b; c ^= rot(b, 8); b += a; \
a -= c; a ^= rot(c,16); c += b; \
b -= a; b ^= rot(a,19); a += c; \
c -= b; c ^= rot(b, 4); b += a; \
}
/* final -- final mixing of 3 32-bit values (a,b,c) into c */
#define final(a,b,c) \
{ \
c ^= b; c -= rot(b,14); \
a ^= c; a -= rot(c,11); \
b ^= a; b -= rot(a,25); \
c ^= b; c -= rot(b,16); \
a ^= c; a -= rot(c,4); \
b ^= a; b -= rot(a,14); \
c ^= b; c -= rot(b,24); \
}
/* This is a fast, reversable hash function called "lookup3", found here:
http://burtleburtle.net/bob/c/lookup3.c, by Bob Jenkins
This hashing algorithm is "reversible", that is, not cryptographically
secure at all. But we don't care about that, we just want something to
tell when images are the same or different relatively quickly.
*/
guint32 hashword(const guint32 *key, gint length, guint32 initval)
{
guint32 a,b,c;
/* Set up the internal state */
a = b = c = 0xdeadbeef + (((guint32)length)<<2) + initval;
/* handle most of the key */
while (length > 3)
{
a += key[0];
b += key[1];
c += key[2];
mix(a,b,c);
length -= 3;
key += 3;
}
/* handle the last 3 guint32's */
switch(length) /* all the case statements fall through */
{
case 3: c+=key[2];
case 2: b+=key[1];
case 1: a+=key[0];
final(a,b,c);
case 0: /* case 0: nothing left to add */
break;
}
/* report the result */
return c;
}
/*! This is some arbitrary initial value for the hashing function. It's
constant so that you get the same result from the same data each time.
*/
#define HASH_INITVAL 0xf00d
guint RrImagePicHash(const RrImagePic *p)
{
return hashword(p->data, p->width * p->height, HASH_INITVAL);
}
static gboolean RrImagePicEqual(const RrImagePic *p1,
const RrImagePic *p2)
{
return p1->width == p2->width && p1->height == p2->height &&
p1->sum == p2->sum;
}